hermite_spline_normalization
HermiteSplineNormalization
Bases: SignalFilter
fs = signals.fs
instance-attribute
peaks_distance_scale = signals.peaks_distance_scale
instance-attribute
__init__(signals)
filter()
Normalizes signal using Cubic Hermite Splines fitted to the amplitude bounds (maxima and minima) of the signal.
Distance between min and max peaks determined as fraction of the median frequency.
Returns:
| Type | Description |
|---|---|
ndarray
|
np.ndarray: Normalized EGMs. |
find_extended_peaks(signal, distance)
staticmethod
Find peaks and add 0 and len(signal) - 1 as peaks without duplication
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signal |
ndarray[N]
|
Input signal. |
required |
distance |
float
|
Minimal distance between peaks. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
tuple |
tuple[ndarray, ndarray]
|
Extended peaks and signal values at the peaks. |
hermite_spline_bound(signal, distance)
staticmethod
Find peaks and interpolate with CubicHermiteSpline
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
signal |
ndarray[N]
|
Input signal. |
required |
distance |
float
|
Minimal distance between peaks. |
required |
Returns:
| Type | Description |
|---|---|
ndarray
|
np.ndarray[N,]: Interpolated amplitudes. |
lower_upper_bounds(distances)
Interpolates lower and upper bounds of the signal(s) using Cubic Hermit Spline.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
distances |
(ndarray[N], float)
|
Minimum distance between peaks. |
required |
Returns:
| Type | Description |
|---|---|
tuple[ndarray, ndarray]
|
lower_bounds, upper_bounds (tuple): Lower and upper bounds of the signals. |