topology
Boundary
arrows = None
instance-attribute
connections = None
instance-attribute
hist = []
instance-attribute
ids = np.array(ids)
instance-attribute
index = 0
instance-attribute
label = ''
instance-attribute
period = 0
instance-attribute
points = np.array(points[ids]).astype(float)
instance-attribute
projection = None
instance-attribute
scalars = np.array(scalars[ids])
instance-attribute
section_count = 12
instance-attribute
sections = None
instance-attribute
__init__(ids, points, scalars)
build_sections(t=0, period=-1, amount=12, geo_center=np.zeros(3))
calc_index(period)
Given an array of edges ex [1, 1, 1, -1, 0, 1, 1, -1, -1] between sections, calculate the sum of phase differences between each two consecutive lats
extend(points, triangles, scalars, distance=0)
get_arrows_object()
Get edge visualization around a boundary with arrows colored by direction. Clockwise, counterclockwise or neutral.
Returns:
| Name | Type | Description |
|---|---|---|
list |
EdgeBuilder
|
List of arrows |
get_center()
get_label_object()
reduce(distance=5)
set_period(period)
to_single_scalars(t=0)
Convert irregular data to single LATs For each node keeping the first LAT after time t
BoundaryFilter
Bases: PolydataFilter
get_boundaries(coords, triangles, scalars, min_points=3)
staticmethod
label(boundaries, maptype)
staticmethod
Automatic labeling of anatomical boundaries based on default orientation of CARTO and Rhythmia exported data. The three largest boundaries are labeled "MV", "LPV" and "RPV". Any remaining boundaries are labeled "scar".
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
boundaries |
list[Boundary]
|
List of boundaries to label. |
required |
maptype |
str
|
Mapping system. Options are "carto" or "rhythmia". |
required |